III. Progressions arithmétiques et géométriques.

1. Introduction

1.1 Exemples:

Dans certaines situations particulières, on est amené à considérer des suites de réels.

Exemple 1

On place un capital de 10000 € à un taux de 3% durant une longue période.

Etudier l'évolution du capital dans 2 cas :

- a) S'il s'agit d'intérêts simples
- b) S'il s'agit d'intérêts composés.

Solution:

- a) Au bout de n années : C = 10000 + 300 n
- b) Au bout de n années : C = 10000 . 1.03 ⁿ⁻¹

Les suites de nombres obtenues (capitaux des années successives) seront donc :

- a) 10600, 10900, ...: une telle suite est une suite arithmétique
- b) 10300, 10609, 10927,27, ...: une telle suite est une suite géométrique.

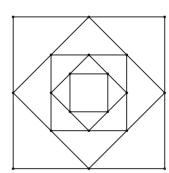
Exemple 2

Dans un carré, on joint les milieux des côtés consécutifs et on recommence indéfiniment l'opération.

- a) Déterminer, en fonction de la longueur des côtés du carré initial, la longueur des côtés des carrés ainsi obtenus.
- b) De quel genre de suite s'agit-il?

Solution: a) a,
$$\frac{a}{\sqrt{2}}$$
, $\frac{a}{2}$, $\frac{a}{2\sqrt{2}}$, $\frac{a}{4}$, ... et donc $c_n = a \left(\frac{1}{\sqrt{2}}\right)^n$

b) Il s'agit d'une progression géométrique de raison $q = \frac{1}{\sqrt{2}}$



On peut considérer de nombreuses suites. Prenons quelques exemples.

- 1. 1, 5, 7, 10, 29
- 2. 3, 5, 7, 9, 11 ...
- 3. -10, -5, 0, 5, 10,
- 4. 1, -1, 2, -2, 3, -3,
- 5. 1, 2, 4, 8, 16, ...
- 6. 8, 0, -8, -16, -24, ...

7.
$$2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

Les suites 2, 3 et 6 sont des suites arithmétiques et les suites 5 et 7 sont des suites géométriques Les suites 2 et 5 convergent vers l'infini.

La suite 7 converge vers 0

1.2 Définitions :

Une suite numérique peut être définie de différentes façons :

- En extension: on énumère les termes de la suite comme nous l'avons fait ci-dessus: t₁, t₂, t₃,
- <u>En compréhension</u>: on exprime le terme général de la suite en fonction de n.

Exemple: $\forall n \in \mathbb{N}_0 : t_n = (-1)^n n$

• Par récurrence : Exemple : $t_1 = 1$ et $t_{n+1} = 2t_n + 3$

Exercices

1°) Soit les suites a) 2, 5, 8, ... et b) 2, -4, 8, -16, ...

Définir ces suites en compréhension et par récurrence

2°) Soit les suites a) $t_1 = 2$ et $t_{n+1} = 2 - t_n$ et b) $t_1 = 2$ et $t_{n+1} = 3$ t_n

Définir ces suite en extension et en compréhension

1.3 Suites arithmétiques et géométriques

Une <u>suite arithmétique</u> ou <u>progression arithmétique</u> est une suite de nombres telle que chacun d'eux (à partir du second) est égal au précédent augmenté d'un nombre constant appelé la raison de la suite.

Une <u>suite géométrique</u> ou <u>progression géométrique</u> est une suite de nombres telle que chacun d'eux (à partir du second) est égal au précédent multiplié par un nombre constant appelé raison de la suite.

1.4 Notations

Les termes de telles suites sont notés t_1 , t_2 , t_3 , ... t_n Dans une progression arithmétique, on note la raison r. Dans une progression géométrique, on note la raison q

2. Les progressions arithmétiques

2.1 Exemples:

- 1. 1, 5, 9, 13,
- 2. 2, 4, 6, 8, 10, ...
- 3. -3, -6, -9, -12, ...

2.2 Terme général d'une progression arithmétique

En général : t1 , t2 , t3: les termes d'une progression arithmétique de raison r

$$t_2 = t_1 + r$$

$$t_3 = t_2 + r = t_1 + r + r = t_1 + 2r$$

$$t_4 = t_3 + r = t_1 + 2r + r = t_1 + 3r$$

et donc
$$t_n = t_1 + (n - 1) r$$

2.3 somme de n termes consécutifs d'une progression arithmétique

Soit à effectuer la somme de t_1 , t_2 , t_3 , ... t_{n-2} , t_{n-1} , t_n : n termes consécutifs d'une progression arithmétique.

$$S = t_1 + t_2 + t_3 \;\; ..+ \; t_{n\text{--}2} + t_{n\text{--}1} + t_n$$

$$S = t_n + t_{n-1} + t_{n-2} + t_1 + t_2 + t_1$$

En additionnant ces deux expressions de la somme, nous obtenons :

$$2S = t_1 + t_n + t_2 + t_{n-1} + t_3 + t_{n-2} + \dots + t_{n-2} + t_3 + t_{n-1} + t_2 + t_n + t_1$$

$$\Leftrightarrow 2S = (t_1 + t_n) + (t_1 + r + t_n - r) + (t_1 + 2r + t_n - 2r) + \dots + (t_n - 2r + t_1 + 2r) + (t_n - r + t_1 + r) + (t_n + t_1) + (t_n + t_$$

$$\Leftrightarrow$$
 2 S = $(t_1 + t_n) + (t_1 + t_n) + (t_1 + t_n) + \dots + (t_1 + t_n) + (t_1 + t_n) + (t_1 + t_n)$

$$\Leftrightarrow$$
 2S = n (t₁ + t_n)

Et la somme de n termes consécutifs d'une progression arithmétique vaut donc:

$$S = \sum_{i=1}^{n} t_i = \frac{t_1 + t_n}{2} n$$

Si la somme ne débute pas au premier terme de la progression, nous avons : $\sum_{i=n}^{p+n-1} t_i = \frac{t_p + t_{p+n-1}}{2} \, n$

2.4 Applications.

- 1. Calculer le 27^{ème} terme de la série 4, 14, 24,
- 2. Si $t_1 = a$ et $t_2 = 2a + b$ sont les deux premiers termes d'une progression arithmétique, calculer le $25^{\text{ème}}$ terme de cette progression arithmétique
- 3. 5 nombres sont en progression arithmétique. Déterminer ces nombres sachant que leur somme est 125 et que la somme des 2 premiers est 38
- 4. Calculer 6 + 12 + 18 + ... + 60
- 5. calculer les sommes suivantes :

a)
$$1 + 2 + 3 + 4 + \dots + n$$

b)
$$1 + 3 + 5 + ... + (2n - 1)$$

c)
$$\sum_{i=1}^{12} 2i$$
 et $\sum_{i=1}^{p} 2i$

6. On donne les suites suivantes de manière récurrente. Exprimer le terme général u_n en fonction de n :

a)
$$u_1 = 5$$
 et $u_n = u_{n-1} - 1,5$

b)
$$u_1 = -3$$
 et $3u_{n+1} - 3u_n = 4$

$$(n \ge 1)$$

7. Déterminer x pour que les trois réels 2x - 1, x + 2, et 1 - 3x soient trois termes consécutifs d'une suite arithmétique.

solutions:

2)
$$t_{25} = 25a + 24b$$

5) a)
$$\frac{n(n+1)}{2}$$
 b) n^2 c) 156 et p.(p + 1)

6) a)
$$u_n = 5 - (n-1) \cdot 1,5$$
 b) $u_n = -3 + (n-1) \cdot \frac{4}{3}$ 7) $x = -\frac{4}{3}$

b)
$$u_n = -3 + (n-1) = -3$$

7)
$$x = -\frac{1}{2}$$

3. Les progressions géométriques.

3.1 Exemples:

3.
$$5, \frac{5}{3}, \frac{5}{9}, \frac{5}{27}$$

3.2 Terme général d'une progression géométrique

En général : t₁, t₂, t₃: les termes d'une progression géométrique de raison q

$$t_2 = t_1 \cdot q$$

$$t_3 = t_2 \cdot q = t_1 \cdot q \cdot q = t_1 \cdot q^2$$

$$t_4 = t_3 \cdot q = t_1 \cdot q^2 \cdot q = t_1 \cdot q^3$$

et donc $t_n = t_1 \cdot q^{n-1}$

et donc
$$t_n = t_1 \cdot a^{n-1}$$

Application:

Imaginons que l'on puisse réaliser l'expérience suivante : on plie une feuille de papier de 0,1 mm d'épaisseur en deux. Puis on plie le résultat à nouveau en deux. On continue de même jusqu'à avoir effectué 50 pliages successifs! Calculer l'épaisseur de ce pliage.

Sachant que la distance terre/lune moyenne est de 385 000 km, comparer ces deux valeurs.

3.3 Somme de n termes consécutifs d'une progression géométrique

Soit à effectuer la somme de t_1 , t_2 , t_3 , ... t_{n-2} , t_{n-1} , t_n : n termes consécutifs d'une progression géométrique.

$$S = t_1 + t_2 + t_3 \ ... + t_{n\text{--}2} + t_{n\text{--}1} + t_n$$

$$S = t_1 + t_2 + t_3 \dots + t_{n-2} + t_{n-1} + t_n$$
C'est à dire: $t_1, t_1.q, t_1.q^2, \dots, t_1.q^{n-2}, t_1.q^{n-1}$

$$S = t_1 + t_1 \dots q + t_1 \dots q^2 + \dots t_1 \dots q^{n-2} + t_1 \dots q^{n-1}$$
Et donc $q \dots S = t_1.q + t_1.q^2 + t_1.q^3 + \dots + t_1.q^{n-1} + t_1.q^n$

$$S = t_1 + t_1 \cdot q + t_1 \cdot q^2 + ...t_1 \cdot q^{n-2} + t_1 \cdot q^{n-1}$$

Et donc
$$a = x_1 + x_2 + x_3 + x_4 + x_4 + x_5 + x_5$$

En soustrayant membre à membre ces deux égalités, nous obtenons :

$$S - q.S = t_1 - t_1 . q^n$$

$$\Leftrightarrow$$
 S (1 - q) = t₁(1 - qⁿ)

et donc:

$$S = \sum_{i=1}^{n} t_i = t_1 \frac{1 - q^n}{1 - q}$$

 $S = \sum_{i=1}^n t_i \ = t_1 \ \frac{1-q^n}{1-q}$ Lorsque la somme débute au terme p, nous avons : $\sum_{i=1}^{p+n-1} t_i = t_p \ \frac{1-q^n}{1-q}$

3.4 Applications

1.
$$t_1 = 96$$

$$t_4 = 768$$

Déterminer la raison de cette progression géométrique et calculer la somme de ses 10 premiers termes

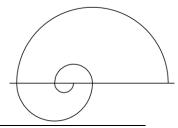
2. Calculer

a)
$$1 + 0.1 + 0.01 + \dots + 10^{-7}$$

b)
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32}$$

3. On construit une spirale comme dans le graphique ci-contre (chaque demi-cercle a un rayon double de celui du demi-cercle précédent).

Quelle est la longueur de cette spirale lorsqu'elle est formée de 9 demi-cercles sachant que le rayon du premier demi-cercle mesure 3 cm?



4. Un sapin augmente sa taille de 10% chaque année. Après combien d'années aura-t-il doublé sa taille ? Solutions

1)
$$q = 2$$
 S = 98208 2) a) 1,1111111 b) $1 - \frac{1}{32} = 0.96875$ 3) 1533 π 4) 8

3.5 Exercices généraux

- 1. Les angles consécutifs d'un trapèze forment une progression arithmétique. Si le plus petit angle mesure 75°, déterminer la mesure du plus grand (Olympiade 1990 demi-finale)
- 2. (olympiade 2009) $9 + 19 + 29 + \dots + 2009 =$
- 3. (olympiade 2009) Quel est le reste de la division par 7 du nombre : $1^3 + 2^3 + 3^3 + \dots + 2009^3$?
- 4. Une chaufferie produit de la vapeur à 100°. La température de la vapeur diminue de 1% par mètre de tuyauterie parcourue. Quelle est la distance maximale (de tuyaux) pour recueillir de la vapeur à au moins 60°?
- 5. Calculer la somme des multiples de 7 compris entre 1515 et 1994
- 6. Au premier tour de l'élection présidentielle française, un certain nombre de candidats sont en présence. Un second tour sera nécessaire si aucun candidat ne recueille plus de 50% des votes. Après le premier tour, on classe les candidats selon le pourcentage des voix obtenues et on constate que chaque candidat a exactement la moitié des voix de celui qui le précède. Un second tour est-il nécessaire?
- 7. 31 livres sont rangés de gauche à droite par ordre de prix croissant. Le prix de chaque livre diffère de 0.5€ du prix de chacun de ses voisins. Pour le prix du livre à l'extrême droite, un client peut acheter le livre du milieu plus un de ses voisins.

Le livre voisin est-il celui de gauche ou celui de droite?

Déterminer le prix du livre le plus coûteux.

Quel est le prix du livre du milieu?

- 8. (Olympiade éliminatoires 1992) : Calculer : $\frac{1}{2} + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \dots + \left(\frac{1}{100} + \frac{2}{100} + \dots + \frac{99}{100}\right)$
- 9. Un capital est placé à intérêts composés à un taux de 3%. Après combien de temps, ce capital aura-t-il augmenté de 50% ?
- 10. Depuis la naissance de Julien le 20 décembre 2000, sa grand-mère verse à son intention une somme de 150€ sur un compte-épargne le 1^{er} janvier de chaque année. Le taux de placement est de 3% par an et les intérêts sont composés annuellement. De quelle somme Julien disposera-t-il le premier janvier 2020 (après le 20ème versement de sa grand-mère)?

Solutions:

1) 105° 2) 202 809 3) 0 4) entre 50 et 51m

5) 119238 6) non (prouver que le pourcentage du premier est supérieur à 50 quel que soit n) 7) $t_1 = 0.5$ et r = 0.5: pour le prix du $31^{\text{ème}}$ livre ($t_{31} = 15.5$), on peut donc acheter le $16^{\text{ème}}$ livre ($t_{16} = 8$) et le